Structure-reactivity correlation for the ligand-decelerated catalytic osmium tetraoxide dihydroxylation of alkenes

Ender Erdik* and Didem Kâhya

Ankara University, Science Faculty, Beşevler, Ankara 06100, Turkey

Received 26 June 2001; revised 3 December 2001; accepted 10 December 2001

ABSTRACT: Kinetic studies on the ligand-decelerated catalytic OsO_4 dihydroxylation of seven substituted styrenes with trimethylamine-N-oxide in the absence and in the presence of pyridine ligand have been carried out. The rates correlate with the Hammett relationship and V-shaped plots with a maximum are in agreement with the oxidation of osmate(VI) ester in the rate-determining step. Copyright © 2002 John Wiley & Sons, Ltd.

KEYWORDS: ligand-decelerated catalysis; osmium tetraoxide dihydroxylation; V-shaped Hammett plot

INTRODUCTION

As a part of our continuing investigations into the *tert*-amine-decelerated catalytic OsO₄ dihydroxylation of alkenes with trimethylamine-*N*-oxide (Me₃NO) as a secondary oxidant, ^{1,2} we have also examined the alkene substituent effects on the reaction rate by examining the Hammett plot.

There have been several kinetic and mechanistic studies of plain hydroxylation ^{1–8} and Sharpless's asymmetric dihydroxylation of alkenes ^{9–13} by either stoichiometric OsO₄ oxidation ^{3,5–7,12,13} or by catalytic OsO₄ oxidation using a secondary oxidant. ^{1,2,4,9–11} Ligand-accelerated catalysis ¹⁴ has long been recognized in the presence of *tert*-amines ^{5,7,8,15,16} and chiral alkaloids as ligands. ^{7,8,12,13,17} Sharpless and coworkers reported that the rate-determining step consists of the osmylation reaction forming dioxomonoglycolatoosmium(VI) ester (1) and their *tert*-amine adducts (2) with only a single amine participation ^{9–12} (Scheme 1, steps a and b) and rate saturation occurs at high amine concentrations. ^{9,10,12} Sharpless's cycle for catalytic OsO₄ dihydroxylation of alkenes is well established. ¹¹ For the formation of Os(VI) esters 1 and 2 the currently favored [3 + 2] mechanism ^{18–20} has recently received more additional support from theoretical studies ²¹ compared with the [2 + 2] mechanism involving formation of an osmaoxetane via an alkene complex. ^{22,23}

Our long-term kinetic studies^{1,2} led to a rate law that is first-order in OsO₄, first-order in Me₃NO and zeroth-

E-mail: erdik@science.ankara.edu.tr

Contract/grant sponsor: Ankara University Research Fund; Contract/grant number: 96-25-00-25.

$$OsO_{4} \xrightarrow{R} OsO_{4} OsO_{4} \xrightarrow{R} OsO_{4} OsO_{4} \xrightarrow{R} OsO_{4} OsO_{4}$$

Scheme 1

order in alkene, and thus the rate-determining step is the oxidation of the relatively substitution-inert dioxomono-glycolatoosmium(VI) esters 1 and their monoamine adducts 2 to substitution-labile trioxomonoglycolatoosmium(VIII) esters 3 and 4 by Me₃NO (Scheme 1, steps c and d). All *tert*-amines have been found to retard the catalysis greatly, with an inverse first-order or partial order, and beyond a definite concentration of amine the rate reaches a minimum and remains constant.

RESULTS AND DISCUSSION

Our aim was to investigate the electronic effects of alkenes in some detail in the ligand-decelerated catalytic OsO₄ dihydroxylation with Me₃NO in order to gain some insight into the rate-determining step, and we used dihydroxylation of substituted styrenes in the absence and presence of pyridine as a probe for Hammett plots.

tert-Amine oxides oxidize by atom and electron transfer.²⁴ In the atom transfer reaction, the atom being oxidized and the atom being reduced form directed bonds to a common atom, which then serves as a bridge for

^{*}Correspondence to: E. Erdik, Ankara University, Science Faculty, Beşevler, Ankara 06100, Turkey.

Scheme 2

electron transfer (Scheme 2). In this case the rate is strongly dependent on the nature of the bridge, i.e. on the affinity of the reductant for the bridging group.²⁵ The substitution on the alkene can change the affinity of Os(VI) both toward the oxygen transfer, to form an intermediate complex, and the electron transfer, to form Os(VIII)=O.

By testing the Hammett relationship in the ligand-decelerated catalytic OsO₄ dihydroxylation of substituted styrenes with Me₃NO we hoped to be able to determine both the effect of the Os(VI) ester structure and the presence of ligand on the ease and mechanism of oxygen transfer in the rate-limiting oxidation step.

If oxidation of Os(VI) ester 1 to Os(VIII) ester 3 with Me₃NO is a two-step reaction, i.e. Os-O-NMe₃ complex formation in the first step and O-N bond cleavage in the second step, the two steps respond differently to substituents at the test site. We would then expect that both electron-withdrawing and electrondonating substituents will facilitate the reaction: the less electron density that is pushed on the osmium by an electron-withdrawing substituent results in the rate increase in the formation of the complex whereas the more electron density that is pushed on the osmium by an electron-donating substituent results in a rate decrease in the breakdown of the complex. Thus, we would expect this to result in the formation of V-shaped Hammett plots. ^{26–28} If, however, the electron donation step is slow the reaction will be facilitated with only electronwithdrawing substituents, resulting in a linear Hammett plot with a positive slope.

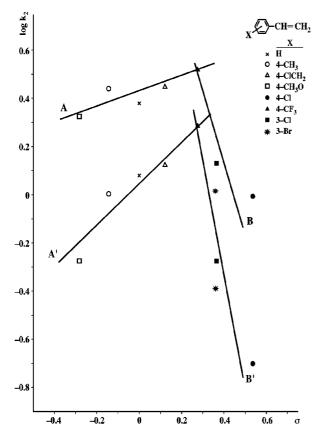
Electronic effects in *tert*-amine-accelerated dihydroxylation of alkenes have been investigated thoroughly by Sharpless and coworkers.²⁹ The negative reaction constant of a Hammett plot based on the kinetics of the stoichiometric dihydroxylation of substituted styrenes is consistent with the electrophilic character of OsO₄ in the rate-limiting osmylation step and agrees with the observations on symmetrical *trans*-stilbenes³⁰ and substituted vinyl ethers.³¹ However, *tert*-amine-accelerated reactions were found to be faster for styrenes bearing either electron-donating or electron-withdrawing substituents, resulting in curved Hammet plots with a minimum.

Since it is generally accepted that the existence of a Hammett plot requires that the reaction series under study be either isoenthalpic, isoentropic or isokinetic, ^{26,27} it is noteworthy that we observed the same mechanism in the

Table 1. Second-order rate constants of catalytic OsO₄ dihydroxylation of substituted styrenes $X-C_6H_4CH=CH_2$ with Me₃NO in *tert*-butyl alcohol at 50 °C in the absence and in the presence of pyridine^a

	$k_2 \ (\mathrm{M}^{-1} \ \mathrm{s}^{-1})$	
X	without pyridine	presence of pyridine
H	2.40	1.20
4-CH ₃	2.77	1.19
4-ClCH ₂ ^b	3.08	1.36
4-CH ₃ O	2.15	0.53
4-Cl	3.30	1.94
4-CF ₃	0.86	0.20
3-Cl	1.35	0.53
3-Br	1.07	0.41

^a [alkene] = 0.436 M; [Me₃NO] = 0.451 M; [OsO₄] = 1.2×10^{-3} M; [pyridine] = 10×10^{-3} M.


ligand-decelerated OsO_4 dihydroxylation of substituted styrenes, which is consistent with the proposed kinetic law;² we also found that a linear relationship exists between ΔH^{\ddagger} and ΔS^{\ddagger} values in the reaction of a model substituted styrene in the presence of varying ligand concentration, implying the same mechanism in the absence and in the presence of a ligand.³²

Second-order rate constants in the catalytic OsO_4 dihydroxylation of substituted styrenes with Me_3NO in *tert*-butyl alcohol at $50\,^{\circ}C$ in the absence and in the presence of pyridine are summarized in Table 1 and Hammett plots for the reactions using σ valves 28,33,34 are given in Figure 1.

The Hammett plots for reactions both in the absence and presence of pyridine are V-shaped plots with a maximum and show two distinct lines for each of which there is a good correlation between the σ values and the logarithm of the rate constants. Electron-donating groups fall on the one side with positive slopes and electron-withdrawing groups on the other side with negative slopes. The break in each plot corresponds to p-chlorostyrene. Reaction constants ρ were found to be $+0.32 \pm 0.04$ (r = 0.858) and -1.89 ± 0.10 (r = 0.952) in the absence of pyridine and $+0.93 \pm 0.02$ (r = 0.914) and -3.34 ± 0.11 (r = 0.963) in the presence of pyridine. Thus, as expected, V-shaped Hammett plots provide strong support for the concerted mechanism of the ratedetermining oxidation step that we proposed for liganddecelerated catalytic OsO₄ dihydroxylation of alkenes. The degree of concertedness is expected to depend on the substituent effects.

In addition, the rate decrease with electron-donating substituents requires development of a negative charge or increase in the negative charge in the rate-determining step. The formation of the intermediate complex by electron donation from *tert*-amine oxide oxygen to osmium supports this fact, resulting in a positive ρ .

^b Blank experiments show that no observable solvolysis of benzylic chloride takes place.

Figure 1. Hammett plots for second-order rate constants k_2 using σ values. A and B: in the absence of pyridine; A' and B': in the presence of pyridine

The higher reaction constants show the susceptibility of the pyridine-decelerated reaction to the effects exerted by the substituent. This result is as should be expected from the above fact. The rate decrease with electron-donating substituents is higher in the presence of a ligand than that without a ligand, since negative charge on osmium will be hardly dispersed in the coordination of ligand. However, electron-withdrawing substituents will be more effective in the presence of a ligand at dispersing the negative charge on osmium.

In conclusion, we have shown that the Hammett relationship for the catalytic OsO₄ dihydroxylation of alkenes with Me₃NO in *tert*-butyl alcohol in the absence and in the presence of a *tert*-amine ligand gives V-shaped plots with a maximum. This finding is consistent with the oxidation of osmate(VI) ester in the rate-determining step of ligand-decelerated catalytic OsO₄ dihydroxylation.

EXPERIMENTAL

tert-Butyl alcohol was fractionated. Osmium tetraoxide (CAUTION: very toxic) and Me₃NO were obtained from Aldrich Chemical Co. Alkenes were obtained from various sources and purified according to the published

procedures. The kinetics of catalytic OsO₄ dihydroxylation of alkenes with Me₃NO in tert-butyl alcohol at 50.0 °C were followed by measuring the concentration of the remaining alkene by gas chromatography as previously described. 1,2 The data were taken with almost equal concentrations of alkene and Me₃NO under limiting OsO_4 concentrations, i.e. [alkene] = 0.436 M, $[Me_3NO] = 0.451 \text{ M}, [OsO_4] = 1.20 \times 10^{-3} \text{ M}.$ The observed pseudo first-order rate constants k_1 were calculated from the slopes of the linear plots of $\log c_t$ versus time, where c_t is the concentration of alkene at time t. First-order plots proved linear over three half-lives. Each kinetic run ordinarily utilized 10-12 points to obtain the rate data. Reproducibility was generally $\pm 3\%$. Rate constants k_2 were calculated as $k_1/[OsO_4]$. Measurements were also made in the presence of 10×10^{-3} M pyridine.

Rate constants and reaction constants of the Hammett plots were obtained by using a linear least-squares program on a computer.

Acknowledgement

We thank Ankara University Research Fund for Grant no. 96-25-00-25.

REFERENCES

- 1. Erdik E, Matteson DS. J. Org. Chem. 1989; 54: 2742.
- 2. Erdik E, Kâhya D. Int. J. Chem. Kinet. 1997; 29: 359.
- 3. Schroder M. Chem. Rev. 1980; 80: 187
- 4. Zelikoff M, Taylor HA. J. Am. Chem. Soc. 1950; 72: 5039.
- Subbaraman LR, Subbaraman J, Behrman EJ. *Inorg. Chem.* 1972; 11: 2621.
- 6. Deetz JS, Behrman EJ. J. Org. Chem. 1980; 45: 135.
- 7. Hartman RF, Rose SD. J. Org. Chem. 1981; 46: 4340.
- 8. Minato M, Yamamoto K, Tsuji S. J. Org. Chem. 1990; 55: 766.
- 9. Jacobsen EN, Marko I, Mungall WS, Schroder G, Sharpless KB. *J. Am. Chem. Soc.* 1988; **110**: 1968.
- Jacobsen EN, Marko I, France MB, Svendsen JS, Sharpless KB. J. Am. Chem. Soc. 1989; 111: 737.
- 11. Wai JMS, Marko I, Svendsen JS, Finn MG, Jacobsen EN, Sharpless KB. J. Am. Chem. Soc. 1989; 111: 1123.
- Kolb HC, Andersson PG, Bennani YL, Crispino GA, Jeong K-S, Kwong H-L, Sharpless KS. J. Am. Chem. Soc. 1993; 115: 12226.
- Kolb HC, Andersson PG, Sharpless KB. J. Am. Chem. Soc. 1994;
 116: 1278.
- Berrisford DJ, Bolm C, Sharpless KB. Angew. Chem. Int. Ed. Engl. 1995; 34: 1059.
- 15. Ray R, Matteson DS. J. Ind. Chem. Soc. 1982; 59: 119.
- 16. Wu Y-D, Wang Y, Houk KN. J. Org. Chem. 1992; 57: 1362.
- 17. Kolb KN, VanNiuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483
- 18. Torrent M, Deng L, Duran M, Sola M, Ziegler T. *Organometallics* 1997; **16**: 13.
- DelMonte AI, Haller J, Houk KN, Sharpless KB, Singleton DA, Strassner T, Thomas AA. J. Am. Chem. Soc. 1997; 119: 9908.
- Pidun U, Boehme C, Frenking G. Angew. Chem. Int. Ed. Engl. 1996; 35: 281.
- Norby P-O, Rasmussen T, Haller S, Strassner T, Houk KN. J. Am. Chem. Soc. 1999; 121: 10186.
- Racker R, Nijlas M, Schmidt B, Reiser O. J. Chem. Soc. Perkin Trans. 2 1999; 9907.
- 23. Norby P-O, Gable KP. J. Chem. Soc. Perkin Trans. 2 1996; 171.

- 24. Katritzky AR, Lagowski JM. Heterocyclic N-Amine Oxides. Academic Press: 1971.
- 25. Porterfield WW. Inorganic Chemistry. Addison-Wesley: 1984.
- 26. Isaacs NS. Physical Organic Chemistry. Longman: 1987.
- 27. Espenson JH. Chemical Kinetics and Reaction Mechanisms. McGraw-Hill: Toronto; 1995.
- 28. Zuman P, Patel RC. Techniques in Organic Reaction Kinetics. Wiley: 1984.
- 29. Nelson DW, Gypser A, Ho PT, Kolb HC, Kondo T, Kwong H-L,
- McGrath DW, Rubin AE, Norrby PO, Gable KP, Sharpless KB. J. Am. Chem. Soc. 1997; 119: 1840.
- 30. Henbest HB, Jackson WR, Robb BCG. J. Chem. Soc. B 1966; 804.
- 31. Toyoshima K, Okuyama K, Takayuki F. J. Org. Chem. 1980; 45: 1600.
- 32. Erdik E, Kâhya D. Manuscript in preparation.
 33. Chapman NB, Shorter J (eds). *Correlation Analysis in Chemistry*. Plenum: London; 1978.
- 34. Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165.